In Silico Gene-Level Evolution Explains Microbial Population Diversity through Differential Gene Mobility.
نویسندگان
چکیده
Microbial communities can show astonishing ecological and phylogenetic diversity. What is the role of pervasive horizontal gene transfer (HGT) in shaping this diversity in the presence of clonally expanding "killer strains"? Does HGT of antibiotic production and resistance genes erase phylogenetic structure? To answer these questions, we study a spatial eco-evolutionary model of prokaryotes, inspired by recent findings on antagonistic interactions in Vibrionaceae populations. We find toxin genes evolve to be highly mobile, whereas resistance genes minimize mobility. This differential gene mobility is a requirement to maintain a diverse and dynamic ecosystem. The resistance gene repertoire acts as a core genome that corresponds to the phylogeny of cells, whereas toxin genes do not follow this phylogeny and have a patchy distribution. We also show that interstrain HGT makes the emergent phylogenetic structure robust to selective sweeps. Finally, in this evolved ecosystem we observe antagonistic interactions between, rather than within, spatially structure subpopulations, as has been previously observed for prokaryotes in soils and oceans. In contrast to ascribing the diversification and evolution of microbial communities to clonal dynamics, we show that multilevel evolution can elegantly explain the observed phylogenetic structure and ecosystem diversity.
منابع مشابه
The in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کاملPhylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics
BACKGROUND Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial caroten...
متن کاملGene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملIn silico analysis of Ta9 gene polymorphism in an Iranian Theileria annulata schizont-infected cell line S15 vaccine strain and native isolates
Bovine theileriosis is a tick-borne disease caused by obligate intracellular parasites related to the genus Theileria. Cellular immune responses protect cattle against pathogens through the activation of immune cells. Nowadays, live, attenuated vaccine of Theileria annulata (T. annulata) is being produced in Iran and is recommended for active cattle immunization. Detection of the immunogenic a...
متن کاملGenetic Diversity and Population Structure of Liza klunzingeri from the Northern Persian Gulf Based on AFLP Analysis
The main purpose of this study was to investigate the genetic diversity and population structure of Liza klunzingeri in two regions of the Persian Gulf. In this study, the amplified fragment length polymorphism (AFLP) was employed to analyze population genetic diversity between two populations (Ziyarat & Hendijan). Seven primer combinations (E-AAG/M-CTA, E-ACT/ M-CAA, E-ACT/ M-CTA, E-AAG/M-CTG,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome biology and evolution
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2015